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Supplementary Methods 
 

Normalization and COCONUT co-normalization of expression data 

We first performed normalization within each study, adopting one of two approaches depending on 

the platform. For Affymetrix arrays, we normalized the expression data using either RMA or gcRMA. For 

other platforms, we normalized expression data using the normal-exponential convolution approach for 

background correction followed by quantile normalization. 

Following normalization of the raw expression data, we used the COCONUT algorithm to co-

normalize these measurements and ensure that they were comparable across studies. COCONUT builds on 

the ComBat empiric-Bayes batch correction method, computing the expected expression value of each gene 

from healthy patients and adjusting for study-specific modifications of location (mean) and scale (standard 

deviation) in the gene’s expression. For our analyses, we use the parametric prior of ComBat in which gene 

expression distributions are assumed to be Gaussian and the empirical prior distributions for study-specific 

location and variance modification parameters are Gaussian and Inverse-Gamma, respectively. 

 

Machine learning terminology 

In our manuscript, model refers to a type of machine learning algorithm, such as logistic regression, 

decision tree, neural network, etc. Classifier refers to a model with fixed parameters, ready to be applied to 

previously unseen samples. Classifiers use two types of parameters: weights, which are learned by the core 

algorithm during training (such as stochastic gradient descent), and, for some models, ‘hyperparameters’ 

which control the training procedure and configuration of the model and are set prior to training. In classifier 

development, weights are learned with a given set of hyperparameters on given training data. 

 

K-fold vs LOSO CV 

A conventional approach to develop classifiers capable of generalizing well to unseen samples is 

cross-validation (CV). We considered two different types of CV schemes: k-fold CV and leave-one-study-

out (LOSO) CV. In k-fold CV, we randomly partitioned all samples into k =5 non-overlapping folds of 

roughly similar sample sizes. An underlying assumption of k-fold CV is that the cross-validation training 

and validation samples are drawn from the same distribution. In LOSO CV, one entire study is left out as 

each ‘fold’. LOSO CV is more conceptually aligned to clinical application of diagnostic classifiers in 

heterogeneous clinical settings, and non-machine-learning-based multi-gene diagnostic panels selected 

using LOSO have been shown to be highly generalizable13,18. In both approaches (k-fold and LOSO), 
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candidate classifiers are trained on all folds but one, and then tested in the left-out fold, and the procedure 

is repeated once for each fold. We pooled the predicted probabilities across all left-out folds and computed 

performance metrics on the pooled predictions. We note that left-out studies in LOSO CV vary in size, with 

some studies having quite small sample sizes. By pooling predicted probabilities and computing a model’s 

overall performance based on these pooled predictions (rather than computing metrics for each left-out 

study and averaging the metrics across studies), we account for differences in study size and ensure that 

models with high overall performance generate consistent predictions across studies. 

 

mRNA feature sets 

We here used only the mRNA targets from previously defined diagnostic gene scores1-3. Each of 

these three previously-described scores is calculated as the difference in geometric means (GMs) of the 

expression values of two gene ‘modules’ (one composed of over-expressed genes and the other composed 

of under-expressed genes). The modules are: (1) infection-up: CEACAM1, ZDHHC19, C9orf95, GNA15, 

BATF, C3AR1; (2) infection-down: KIAA1370, TGFBI, MTCH1, RPGRIP1, HLA-DPB1; (3) bacterial-

viral-up: HK3, TNIP1, GPAA1, CTSB; (4) bacterial-viral-down: IFI27, JUP, LAX1; (5) mortality-up: 

DEFA4, CD163, RGS1, PER1, HIF1A, SEPP1, C11orf74, CIT; and (6) mortality-down: LY86, TST, 

KCNJ2.  One mRNA target, OR52R1, was removed from the panel because it has no introns, preventing 

assay development. 

 

Model hyperparameter search 

For the four types of classifiers we consider, hyperparameters must be selectively searched (e.g. by  

random sampling) to optimize classifier performance. LR has one hyperparameter, the lasso penalty 

coefficient, while SVM has two hyperparameters, the C penalty term and the kernel bandwidth, γ. For these 

two models, we performed grid search. In both HiCV and LOSO CV with the full IMX dataset, LR was 

trained based on a grid search of 200 values of the lasso penalty coefficient while SVM was trained using 

a grid search of 100 cost values and 100 values of the bandwidth parameter for a total of 10,000 (C, γ) value 

pairs. 

For XGBoost and MLP, we observed significant variability due to pseudo-random initialization, 

and chose to include the pseudo-random-number generator seed among hyperparameters. For XGBoost, we 

sampled randomly values of the following hyperparameters: (1) seed, (2) learning rate, (3) minimum loss 

reduction required to introduce a split in the classifier tree, (4) maximum tree depth, (5) minimum child 

weight, (6) minimum sum of instance weights required in each child, (7) maximum delta step, (8) L2 penalty 
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coefficient for weight regularization, 9) tree method (exact or approximate), and 10) number of training 

rounds4. 

For MLP, we fixed the mini-batch size to 128 (we had not observed any effect of mini-batch size 

on model performance in preliminary analyses) and the optimization algorithm to ADAM5. We chose 

ADAM as our model optimizer for two main reasons: 1) it has been widely adopted in the deep learning 

literature, 2) ADAM demonstrates attractive and fast convergence properties based in large part on its 

adaptive estimation of learning rates for each model parameter. We randomly sampled values of the 

following hyperparameters for MLP: (1) number of hidden layers, (2) number of nodes per hidden layer, 

(3) type of activation function for all hidden layers, (4) learning rate, (5) number of training iterations, (6) 

type of weight regularization, (7) seed, and (8) presence and extent of dropout for the input and hidden 

layers. We fixed the β1, β2, and ε parameters of ADAM to 0.9, 0.999, and 1e-08 respectively. In HiCV, 

XGBoost was trained with 10,000 randomly sampled hyperparameter configurations; in LOSO CV for final 

classifier development, it was evaluated with 30,000 randomly sampled hyperparameter configurations. In 

HiCV, MLP was evaluated with 100,000 hyperparameter configurations, randomly sampled from grids for 

some hyperparameters and continuous value ranges for others4. In LOSO CV for final classifier 

development, MLP hyperparameters were searched using the fine-tuning procedure described below.   

MLP performance was highly sensitive to the value of the random seed used for initialization of 

the network’s parameters (e.g. weights and biases) as well as other aspects of the network training 

procedure. To mitigate this effect and identify promising points in the space of network weights and biases, 

we first defined a large grid of hyperparameters, excluding the seed. We then evaluated each 

hyperparameter combination from the grid in combination with 250 seed values. Upon completion of this 

initial search, we focused on the most promising hyperparameter combinations. We sampled a new set of 

750 seed values and then evaluated them in combination with the most promising hyperparameter 

configurations of the initial search. 

For each hyperparameter configuration, we pooled predicted probabilities from the left-out studies, 

and calculated APA with the pooled probabilities. Each classifier was thus trained and evaluated on all 

samples in the IMX dataset. The configuration with the highest APA was selected as the final winning set 

of hyperparameter values. 

Hyperparameter searches for both LR and SVM models were performed with local computing 

resources (i.e. personal laptops), generally finishing in a few hours. Hyperparameter searches for XGBoost 

models were also performed on personal laptops. However, owing to the relatively higher dimensional 

hyperparameter space, XGBoost searches required one or two days to complete. MLP hyperparameter 

searches for HiCV were conducted using 40 Amazon AWS c4.8xlarge instances and completed within 8-
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12 hours. We performed the fine-tuning procedure used to identify promising seeds as well as 

hyperparameters for the MLP on our personal laptops, with searches finishing after no more than two days. 

 

Iterative COCONUT matching pseudocode 

In order to make a version of microarray data on which we could train a model that would be 

directly applicable in the NanoString platform, we iteratively applied the COCONUT co-normalization 

algorithm. In the iterative COCONUT procedure, the commercial healthy samples represent the target 

dataset as they remain unchanged over the course of the iterative procedure, and the IMX healthy samples 

represent the query dataset we wish to make similar to the target dataset. This procedure terminated when 

the mean absolute deviation (MAD) between the vectors of average expression of the 29 diagnostic markers 

in both the IMX and commercial healthy datasets did not change by more than 0.001 in consecutive 

iterations. After iterative application of COCONUT, we obtained some values <1 in the training datasets; 

these were truncated to 1 as this is the minimum NanoString value possible. Pseudocode for this procedure 

is: 

1) Run COCONUT to co-normalize query studies to one another to get dataset Q 

2) Set 𝛿"#$% = 0.0 

3) while 𝜏 > 0.001 

a) Run COCONUT to co-normalize Q and target dataset, T, to get Qupd and Tupd 

b) Set Q = Qupd 

c) Compute 𝜇,-./0  = 
∑ ,2
345678
29:
;45678

where qi is a row vector from Q of 29-marker expression 

values for sample i 

d) Compute 𝜇%#/<.%  = 
∑ %=
3>?7@6>
=9:

;>?7@6>
 where tj is a row vector from T of 29-marker expression 

values for sample j 

e) Compute 𝛿A-/  =  
∑ BC45678DC>?7@6>BEF
G9:

HI
 

f) Compute 𝜏 = 𝛿A-/ − 𝛿"#$% 

g) Set 𝛿"#$% = 𝛿A-/ 

 

Description of healthy control samples used for NanoString expression alignment 

 Prospectively collected healthy control samples were obtained commercially from two vendors 

across multiple collection sites. To be deemed “healthy,” patients were non-febrile with no symptoms of 
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infection or other known illness on the day of and for at least 3 days prior to collection and were not 

undergoing antibiotic treatment. Samples were collected in PAXgene Blood RNA tubes per the 

manufacturer’s protocol, frozen at -80°C, and shipped frozen on dry ice. All samples were tested with 

FDA CBER licensed screening tests to show the following: 

    • Hepatitis B Surface Antigen Negative 

    • HBV NAT Negative 

    • NIV 1&2 Antibody Negative 

    • HIV NAT Negative 

    • HCV Antibody Negative 

    • HCV NAT Negative 

    • Syphilis Negative 

    • West Nile Virus NAT Negative 

    • HTLV I/II Negative 

    • T. Cruzi Antibody Negative 

10 samples were obtained through Biological Specialties Corporation (Colmar, PA). 30 samples were 

obtained through BioIVT Corporation (Hicksville, NY). 

 

Software implementation details 

 Data pre-processing and normalization were performed in the R programming language 

(https://www.r-project.org/) while NanoString sample normalization routines were implemented in Python 

(https://www.python.org/). Machine learning software and downstream analyses were also implemented in 

Python. Neural network development used a combination of native Tensorflow 

(https://www.tensorflow.org/) and Keras (https://keras.io/) deep learning frameworks. Analyses were 

carried out on a combination of local compute resources and Amazon Web Services EC2 instances.   

 

Stanford ICU NanoString expression profiling 

Clinical samples were shipped frozen to Inflammatix and run by technicians blinded to clinical 

outcomes. To generate NanoString expression for the Stanford ICU samples, we isolated RNA from 

PAXgene RNA tubes with the RNeasy Plus Micro Kit (Qiagen, part #74034) on a QIAcube (Qiagen), using 
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a custom protocol. Each NanoString expression profiling reaction consisted of 150ng of RNA per sample 

hybridized for 16 hours at 65° C per manufacturer’s instructions. We then followed the nCounter SPRINT 

standard protocol to generate mRNA counts. We normalized the raw mRNA counts across samples using 

the geometric mean of counts for 4 housekeeping genes (CDIPT, KPNA6, RREB1, YWHAB), per 

manufacturer instructions. 

 

Reference biomarkers 

Commonly used biomarkers for infection diagnosis, such as procalcitonin and C-reactive protein 

(CRP), were run only at the treating physician’s discretion, and were frequently missing. We thus 

measured procalcitonin and CRP from frozen serum at a CLIA/CAP-compliant reference laboratory 

(TriCore, Albuquerque, NM). 
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Supplementary Tables 
 
Supplementary Table 1. Assignment of studies to outer folds for hierarchical cross-validation (HiCV) 
analyses. 
 
Outer fold 1: 

STUDY BACTERIAL VIRAL NONINFECTED 

EMEXP3589 4 5 14 

GSE13015 (GPL6106) 45 0 0 

GSE20346 6 4 0 

GSE40012 16 6 12 

GSE60244 22 71 0 

GSE65682 0 0 33 

GSE69528 83 0 0 

TOTAL 176 86 59 

% OF TOTAL 0.55 0.27 0.18 

 
Outer fold 2: 

STUDY BACTERIAL VIRAL NONINFECTED 

EMTAB5273 228 0 0 

GSE21802 0 12 0 

GSE27131 0 7 0 

GSE42834 14 0 68 

GSE82050 0 24 0 

GSE111368 0 33 0 

TOTAL 242 76 68 

% OF TOTAL 0.63 0.20 0.18 

 
Outer fold 3: 

STUDY BACTERIAL VIRAL NONINFECTED 

EMTAB1548 82 0 58 
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GSE13015 (GPL6947) 15 0 0 

GSE28750 10 0 11 

GSE57065 82 0 0 

GSE68310 0 104 0 

TOTAL 189 104 69 

% OF TOTAL 0.52 0.29 0.19 
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Supplementary Table 2. Comparison of HiCV outer fold performance using GM scores vs. 29-mRNA 
inputs as features. Results shown are based on LOSO CV. Each column contains the average of APA 
values achieved by the top 50 models as ranked by LOSO CV in the inner fold. Compared within HiCV 
outer folds, the best 6-GM score models are uniformly noninferior to the best 29-mRNA models.  
 

 

HiCV outer fold 1 HiCV outer fold 2 HiCV outer fold 3 

6-GM 29-mRNA 6-GM 29-mRNA 6-GM 29-mRNA 

LR 0.75 0.75 0.83 0.80 0.75 0.69 

SVM 0.78 0.74 0.87 0.75 0.66 0.60 

XGBoost 0.78 0.78 0.80 0.76 0.67 0.66 

MLP 0.74 0.66 0.75 0.75 0.72 0.67 
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Supplementary Table 3. IMX-BVN-1 AUROCs according to immunocompromised status. Immune 
compromise was defined mainly by presence of HIV/AIDS, s/p solid organ transplant, or recent cancer 
chemotherapy. Of the 109 defined-infection patients, 31 had immune compromise. Numbers in 
parentheses are 95% CI.  
 
 
Stanford ICU single-infected cohort (N=109) 
 Bacterial-vs.-other Viral-vs.-other 
Not immunocompromised 0.89 (0.82-0.96) 0.87 (0.72 – 1.0) 
Immunocompromised 0.76 (0.6-0.93) 0.84 (0.61-1.0) 

 
 
Stanford ICU <36h subgroup (N=70) 
 Bacterial-vs.-other Viral-vs.-other 
Not immunocompromised 0.91 (0.83-0.99) 0.88 (0.69 – 1.0) 
Immunocompromised 0.95 (0.82-1.0) 0.96 (0.83-1.0) 
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Supplementary Table 4. Test statistics per quartile for both bacterial-vs-other (A, C, E) and  viral-vs-
other (B, D, F) scores for IMX LOSO CV (A, B), Stanford ICU (C, D)  and Stanford ICU <36h subgroup 
(E, F) cohorts. The lower two quartiles are treated as rule-out bands, and the upper two quartiles are 
treated as rule-in bands. LR: likelihood ratio. 
 

While IMX-BVN-1 will be reported with four bands, not dichotomized, it is easy to calculate 
dichotomous results around any one of the presented quartiles by summing the remaining quartiles. For 
instance, by dichotomizing above the bottom quartile (to maximize sensitivity), the BVN-1 bacterial-vs-
other test characteristics would be: IMX LOSO CV: 97% sens, 54% spec; Stanford ICU 91% sens, 54% 
spec, Stanford <36h subgroup, 98% sens, 65% spec (shown in last two columns of parts A, C and E, 
respectively). 
 
 

A - 
IMX LOSO CV 

Non-
bacterial Bacterial LR Treated as Sensitivity 

in quartile 
Specificity 
in quartile 

B
ac

te
ri

al
 v

s. 
ot

he
r

 

Quartile 1 
(lowest) 249 18 0.055 Rule out 0.970 0.539 

Quartile 2 159 108 0.52 Rule out 0.822 0.344 

Quartile 3 49 218 3.39 Rule in 0.359 0.894 
Quartile 4 
(highest) 5 263 40.03 Rule in 0.433 0.989 

 
B - 

IMX LOSO CV Non-viral Viral LR Treated as Sensitivity 
in quartile 

Specificity 
in quartile 

V
ir

al
 v

s. 
ot

he
r

 

Quartile 1 
(lowest) 266 1 0.011 Rule out 0.996 0.331 

Quartile 2 257 10 0.12 Rule out 0.962 0.320 

Quartile 3 203 64 0.95 Rule in 0.241 0.747 
Quartile 4 
(highest) 77 191 7.49 Rule in 0.718 0.904 

 
 

C – 
Stanford ICU 

Non-
bacterial Bacterial LR Treated as Sensitivity 

in quartile 
Specificity 
in quartile 

B
ac

te
ri

al
 v

s. 
ot

he
r

 

Quartile 1 
(lowest) 21 6 0.159 Rule out 0.914 0.538 

Quartile 2 14 13 0.52 Rule out 0.814 0.359 

Quartile 3 2 25 6.96 Rule in 0.357 0.949 
Quartile 4 
(highest) 2 26 7.24 Rule in 0.371 0.949 

 
D – 

Stanford ICU Non-viral Viral LR Treated as Sensitivity 
in quartile 

Specificity 
in quartile 

Quartile 1 
(lowest) 27 0 0.000 Rule out 1.000 0.284 
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V
ir

al
 v

s. 
ot

he
r

 

Quartile 2 26 1 0.26 Rule out 0.929 0.274 

Quartile 3 24 3 0.85 Rule in 0.214 0.747 
Quartile 4 
(highest) 18 10 3.77 Rule in 0.714 0.811 

 
 
 

E - Stanford ICU 
<36h subgroup 

Non-
bacterial Bacterial LR Treated as Sensitivity 

in quartile 
Specificity 
in quartile 

B
ac

te
ri

al
 v

s. 
ot

he
r

 

Quartile 1 
(lowest) 17 1 0.035 Rule out 0.977 0.654 

Quartile 2 8 9 0.66 Rule out 0.795 0.308 

Quartile 3 0 17 Div/0 Rule in 0.386 1.000 
Quartile 4 
(highest) 1 17 10.05 Rule in 0.386 0.962 

 
F - Stanford ICU 
<36h subgroup Non-viral Viral LR Treated as Sensitivity 

in quartile 
Specificity 
in quartile 

V
ir

al
 v

s. 
ot

he
r

 

Quartile 1 
(lowest) 18 0 0.000 Rule out 1.000 0.305 

Quartile 2 17 0 0.00 Rule out 1.000 0.288 

Quartile 3 15 2 0.72 Rule in 0.182 0.746 
Quartile 4 
(highest) 9 9 5.36 Rule in 0.818 0.847 
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Supplementary Table 5. IMX-BVN-1 scores stratified by patients who had been on antibiotics <24h or 
were not on antibiotics (N=65) vs those on antibiotics for >=24 hours (N=44). Numbers in parentheses 
are 95% CI. 
 
 Bacterial-vs.-other Viral-vs.-other 
No antibiotics or <24 hours 0.91 (0.84-0.98) 0.93 (0.8 – 1.0) 
>=24 hours antibiotics 0.76 (0.61-0.9) 0.71 (0.47-0.96) 
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Supplementary Table 6. Vignettes and biomarker scores for patients with infection from mixed source 
(e.g. bacterial and viral). 
 

Patient infection description 

BVN1 
bacte-
rial 
score 

BVN1 
viral 
score 

PCT - 
ng/ml 

CRP - 
mg/dl 

Mycoplasma hominis osteomyelitis ~1 week before de-
veloping pneumonia requiring transfer to ICU with 
broncheoalveolar lavage (BAL) with respiratory viral 
panel positive for Respiratory Syncytial Virus (RSV). 

0.163 0.791 1.04 >19 

Pneumonia with Klebsiella pneumoniae in sputum cul-
ture and RSV on respiratory viral panel. CT was read as 
arguing against viral pneumonia due to lack of ground 
glass opacities. 

0.676 0.107 36.72 >19 

Lung transplant patient with severe respiratory failure 
with Parainfluenza on respiratory viral panel. Also with 
elevated white blood cell count and procalcitonin, con-
cerning for bacterial superinfection. Was on broad spec-
trum antibiotics, but difficult to interpret given medical 
complexity and immunosuppression 

0.292 0.207 3.92 >19 

Originally admitted with pneumonia with methicillin-re-
sistant Staphylococcus aureus (MRSA) on BAL.  subse-
quently found to have encephalitis with Herpes Simplex 
Virus and Varicella Zoster Virus in lumbar puncture.  
Transferred to ICU after aspiration event. 

0.615 0.100 0.62 >19 

Influenza positive with methicillin-sensitive Staphylococ-
cus aureus (MSSA) pneumonia/bacteremia.  Also with 
Aspergillus fumigatus and Rhizopus on respiratory cul-
tures which was treated 

0.925 0.017 >100 >19 

Pneumonia with Influenza positive on respiratory viral 
panel, MSSA in sputum, and Streptococcus pneumoniae 
in sputum and on blood culture. 

0.904 0.020 22.25 >19 

Patient with Influenza A (H1N1) on respiratory viral 
panel and Pasteurella multocida bacteremia. 0.837 0.069 49.25 >19 

Lung transplant patient with recent admission for No-
rovirus and Clostridium difficile colitis readmitted for 
respiratory failure and volume overload, not particularly 
septic. Cultures from chest wound with gas on CT grew 
Acinetobacter baumannii and sputum grew Corynebacte-
rium propinquum in setting of new ground glass opacities on 
CT.  

0.224 0.419 missing missing 

HIV positive male presented with sepsis.  Found to have 
Cryptococcus on BAL and in cerebrospinal fluid.  Some 
concern for bacterial infection throughout hospitalization, 
although no positive cultures, and was on broad spectrum 
antibiotics throughout. 

0.445 0.376 9.8 12.6 

Candida bacteriuria and likely spontaneous bacterial per-
itonitis (>250 PMNs at outside hospital paracentesis) as 
well as leukocytosis and elevated procalcitonin.   

0.329 0.374 missing missing 
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Influenza B and MSSA pneumonia 0.063 0.681 6.06 6.2 
ARDS and septic shock due to Parainfluenza pneumonia.  
Patient also had elevated procalcitonin, concerning for 
possible bacterial superinfection 

0.324 0.456 3.54 17.2 

Shock with Enterococcus faecalis bacteremia.  Also 
found to be RSV positive on respiratory viral panel. 0.438 0.118 21.9 10.8 

Cough and respiratory symptoms with infiltrates on chest 
X-ray in setting of neutrophil count of 0. MSSA grew 
from BAL, however, additional concern for fungal pneu-
monia in setting of immunosuppression, given elevated 
galactomannan of 0.76 in BAL.  Was treated empirically 
for both fungal and bacterial pneumonia. 

0.630 0.169 1.72 18.2 
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Supplementary Figures 
 
Supplementary Figure 1. Overall study schema. COCONUT – COmbat CONormalization Using 
conTrols; CV – cross-validation; LOSO – leave-one-study-out; HiCV – hierarchical cross-validation; LR 
– logistic regression; SVM – support vector machines; MLP – multi-layer perceptron; PCT – 
procalcitonin; CRP – C-reactive protein. 
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Supplementary Figure 2. Iterative COCONUT alignment. “Reference” = IMX data; “Target” = 
NanoString data. Shown are density plots of commercial healthy NanoString expression (blue) and IMX 
expression (pink), for all 29 diagnostic markers. The microarray distributions are shown at three distinct 
iterations in the co-normalization-based alignment process. Dashed lines indicate distributions of 
expression of the given reference gene at intermediate iterations (both the first iteration of the procedure 
and the iteration marking the halfway point of the procedure) while solid lines show the distribution at 
termination of the procedure. The distributions of the target and query datasets become visually closer over 
the course of the procedure, as expected. 
 

 

Expression 
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Supplementary Figure 3. Dimensionality reduction plots. (A,C) t-distributed stochastic neighbor 
embedding and (B,D) principal components analysis plots of IMX data. In (A,B) samples are colored by 
class, in (C,D) samples are colored by study. Both embeddings are based on the full set of 29 mRNAs, 
and show broad separability of the classes in high-dimensional space. There is residual study-to-study 
heterogeneity even after removal of technical heterogeneity by COCONUT. 
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Supplementary Fig. 4. HiCV analysis of bias/overfitting using 29-mRNA expression vectors. A-C: 
logistic regression; D-F: SVM; G-I: XGBoost; J-L: MLP. Each row contains HiCV results for outer folds 
1 (A, D, G, J), 2 (B, E, H, K) or 3 (C, F, I, L). The x-axis is the difference between outer fold APA and 
inner fold CV APA (a proxy measure for bias in generalization) for each combination of model and HiCV 
outer fold. The blue density plots correspond to this difference for the top 50 models ranked by LOSO CV 
on the inner fold. Orange density plots show this difference for the top 50 models ranked by 5-fold CV on 
the inner fold. The vertical dashed line indicates equality between inner fold and outer fold APA. The closer 
the density is to the dashed line, the smaller the difference between inner and outer fold performance for 
top classifiers identified by the given CV method. CV methods showing smaller differences between inner 
and outer fold performance (i.e. density closer to dashed line) might lead to selection of classifiers that 
generalize better to unseen data. Overlap between the density plots indicates that both CV methods (k-fold 
and LOSO) produce top classifiers with similar biases in performance between cross-validation on the inner 
fold and validation on the outer fold. 
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Supplementary Fig. 5. HiCV analysis of bias/overfitting of the top 10 classifiers as ranked by inner-
fold performance using 6 GM scores. A-C: logistic regression; D-F: SVM; G-I: XGBoost; J-L: MLP. 
Each row contains HiCV results for outer folds 1 (A, D, G, J), 2 (B, E, H, K) or 3 (C, F, I, L).  The x-axis 
is the difference between outer fold and inner fold APA; the y-axis corresponds to the outer fold APA. The 
vertical dashed line indicates equality between inner fold and outer fold APA. A classifier with high outer 
fold APA (y-axis) and nearly identical performance on the inner fold (x-axis near zero) is more favorable.   
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Supplementary Fig. 6. HiCV analysis of bias/overfitting of the top 10 classifiers as ranked by inner-
fold performance using 29-mRNA expression vectors. A-C: logistic regression; D-F: SVM; G-I: 
XGBoost; J-L: MLP. Each row contains HiCV results for outer folds 1 (A, D, G, J), 2 (B, E, H, K) or 3 (C, 
F, I, L).  The x-axis is the difference between outer fold and inner fold APA; the y-axis corresponds to the 
outer fold APA. The vertical dashed line indicates equality between inner fold and outer fold APA. A 
classifier with high outer fold APA (y-axis) and nearly identical performance on the inner fold (x-axis near 
zero) is more favorable.   
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Supplementary Figure 7. Dimensionality reduction in Stanford ICU data. (A) t-distributed stochastic 
neighbor embedding and (B) principal components analysis plots of the Stanford ICU data. Samples are 
colored by class. Both embeddings are based on the full set of 29 mRNAs.  
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Supplementary Figure 8. Procalcitonin and C-reactive protein ROC plots in the Stanford ICU 
cohort. AUC = Area under the ROC curve. 
 

 


